

ABB MEASUREMENT & ANALYTICS | OPERATING INSTRUCTION

4690 Series Turbidity systems

Accurate, reliable turbidity measurement

Measurement made easy

4690 / 4695 analyzer and a 7998 turbidity sensor

Introduction

An ABB Turbidity system comprises a 4690 / 4695 analyzer and a 7998 turbidity sensor.

The analyzer provides the operator interface and communications to other devices.

The signal from the turbidity sensor is converted by the analyzer and the information is presented on a large, custom-designed, easy-to-read, backlit liquid crystal display (LCD).

The analyzer can be programmed to work with any of the 7998 series sensors and the operating range can also be configured to meet users' requirements.

Available in wall- / pipe-mount or ¼ DIN panelmount versions, the analyzer is protected to IP66, ensuring reliable operation in the most demanding situations. The same level of protection is maintained during programming and calibration.

For more information

Further publications for 4690 turbidity systems are available for free download from: <u>http://new.abb.com/products/measurementproducts</u>

The Company

We are an established world force in the design and manufacture of measurement products for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

Contents

1	Safe	ty	2
	1.1	Electrical Safety	2
	1.2	Symbols	2
	1.3	Health & Safety	2
	1.4	Product Disposal	2
2	Turb	idity Systems	3
	2.1	7998 Sensors	3
	2.2	Turbidity Measurement Systems	3
0	Inote	lation	F
3			
	3.1	Siting Requirements	5
		3.1.1 Analyzer	5
	~ ~	3.1.2 Turbidity Sensor	5
	3.2	Nounting the Analyzer	6
		3.2.1 Wall-Mounting	0 6
		3.2.2 Pipe-Inouring	0
	22	S.2.3 Parter-mounting	/
	3.3	3.3.1 Sample Flowrate	0 0
	3 /	Installing the Optional De-bubbler	9 10
	0.4	3.4.1 Mounting the De-bubbler	10
		3.4.2 Set Up Procedure for De-bubbler	11
4	Flec	trical Connections	12
т	1 1		10
	4.1	4.1.1 Wall- / Pino-mount Analyzor	12
		4.1.1 Waii- / Tipe-mount Analyzer	12
	42	Safety Information	13
	7.2	4.2.1 Relay Contact Protection and Interference	10
		Suppression	13
	43	Connections	14
	1.0	4.3.1 Wall- / Pipe-mount Analyzer Connections	14
		4.3.2 Panel-mount Analyzer Connections	15
		4.3.3 Power Supply Connections	15
	4.4	Selecting the Mains Voltage	16
		4.4.1 Wall- / Pipe-mount Analyzer	16
		4.4.2 Panel-mount Analyzer	16
	4.5	Turbidity Sensor Connections	17
-	<u> </u>	hards and Disaster	
5	Cont		18
	5.1	Display	18
	5.2	Control Familiarization	18
6	Ope	ration	19
-	61	Analyzer Start-up	19
	6.2	Operation – Turbidity Measurement Mode	10
	0.2	6.2.1 Operating Page	19
			.0

7	Calib 7.1 7.2 7.3	Pration20Care and Maintenance of Secondary Standards20Performing a Calibration Verification with a21Secondary Standard21Performing a Calibration with a Primary Standard22
8	Conf 8.1 8.2 8.3 8.4 8.5 8.6	iguration and Electrical Calibration26Access to Configuration Pages26Language Page26Set Up Parameter Page27Set Up Outputs Page29Set Up Serial Interface Page31Electrical Calibration328.6.1Equipment Required328.6.2Preparation328.6.3Electrical Calibration Page33
9	Main 9.1	tenance34Sensor Cleaning349.1.1Sensors Without Wiper Unit349.1.2Sensors With Wiper Unit34
10	Fault 10.1 10.2 10.3	Finding35Error Messages35Unstable or Erratic Readings36Intermittent Short Term Spikes36in Turbidity Readings36
11	Spec	ification
12	Spar 12.1 12.2 12.3 12.4 12.5 12.6	es and Consumables39Maintenance Kits39Accessories39Upgrade Kits39Strategic Spares39Software40De-bubbler40

1 Safety

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

1.1 Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1 Edition 3.1 2017-01 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use' and complies with US NEC 500, NIST and OSHA.

If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

1.2 Symbols

One or more of the following symbols may appear on the equipment labelling:

Â	Warning – Refer to the manual for instructions		Direct current supply only
	Caution – Risk of electric shock	\sim	Alternating current supply only
<u> </u>	Functional earth (ground) terminal)	Both direct and alternating current supply
	Protective earth (ground) terminal		The equipment is protected through double insulation

1.3 Health & Safety

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must be carried out only by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and / or temperature.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address, together with servicing and spares information.

1.4 Product Disposal

Note. The following only applies to European customers.

ABB is committed to ensuring that the risk of any environmental damage or pollution caused by any of its products is minimized as far as possible. The European Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) that came into force on August 13 2005 aims to reduce the waste arising from electrical and electronic equipment; and improve the environmental performance of all those involved in the life cycle of electrical and electronic equipment.

In conformity with European local and national regulations (EU Directive 2002/96/EC stated above), electrical equipment marked with the above symbol may not be disposed of in European public disposal systems after 12 August 2005.

2 Turbidity Systems

2.1 7998 Sensors

Details of the individual sensors are shown in Table 2.1.

Sensor No.	Principle of Sensor	Type of Sensor	Minimum Range	Maximum Range
7998 011 (ISO 7027)	Infrared LED Nephelometric	Flow-through (with wiper unit)	0 to 1 NTU	0 to 40 NTU
7998 012 (ISO 7027)	Infrared LED Nephelometric	Flow-through (with wiper unit)	0 to 40 NTU	0 to 400 NTU
7998 016 (ISO 7027)	Infrared LED Nephelometric	Flow-through (without wiper unit)	0 to 1 NTU	0 to 40 NTU
7998 017 (ISO 7027)	Infrared LED Nephelometric	Flow-through (without wiper unit)	0 to 40 NTU	0 to 400 NTU

Table 2.1 7998 Sensor Range

2.2 Turbidity Measurement Systems

Fig. 2.1 System Arrangements

Fig. 2.2 Turbidity Sensors - Main Components

3.1 Siting Requirements

3.1.1 Analyzer

Caution.

- Mount in a location free from excessive vibration.
- Mount away from harmful vapors and dripping fluids.

Note. Mount the analyzer at eye level to enable an unrestricted view of the front panel displays and controls.

Fig. 3.1 Siting Requirements - Analyzer

3.1.2 Turbidity Sensor

To enable the turbidity sensor to be removed easily for maintenance, ensure an all-round clearance of 200 mm (7.9 in) – see Section 3.3, page 8 for the overall dimensions of the sensor.

Note. Ensure the sensor is located at an appropriate height to ensure ease of access during calibration and cleaning.

Caution. Mount the sensor in a location away from direct sunlight.

3.2 Mounting the Analyzer

3.2.1 Wall-mounting

Fig. 3.2 Overall Dimensions

Referring to Fig. 3.3:

- (1) Mark fixing centers (see Fig. 3.2).
- 2 Drill suitable holes.
- (3) Secure analyzer to wall using suitable fixings.

Fig. 3.3 Wall-mounting

3.2.2 Pipe-mounting

Fig. 3.4 Overall Dimensions

Referring to Fig. 3.5:

- 1 Position 'U' bolts on pipe.
- (2) Position plates over 'U' bolts.
- (3) Secure plates.
- (4) Secure analyzer to mounting plate.

Fig. 3.5 Pipe-mounting

3.2.3 Panel-mounting

Fig. 3.6 Overall Dimensions

Referring to Fig. 3.5:

- (1) Cut a hole in the panel (see Fig. 3.6 for dimensions). Analyzers may be close stacked to DIN 43835.
- (2) Loosen the retaining screw on each panel clamp.
- (3) Remove the panel clamp and anchors from the analyzer case.
- (4) Insert the analyzer into the panel cut-out.
- (5) Refit the panel clamps to the case, ensuring that the panel clamp anchors are located correctly in their slot.
- (6) Secure the analyzer by tightening the panel clamp retaining screws.

Caution. The clamp must fit flat on the analyzer casing. If the clamp is bowed, the securing screw is overtight and sealing problems may occur.

Fig. 3.7 Panel-mounting

Turbidity systems

3.3 Mounting the Turbidity Sensor

Systems and sensors are shown in Table 2.1 on page 3. The main components of each sensor are identified in Fig. 2.2 on page 4.

Referring to Figs 3.8 or 3.9:

- 1. Mount the sensor in the orientation shown using the bracket(s) provided, ensuring it is mounted within 5° of its vertical axis.
- 2. Connect the sample inlet and sample drain tubes.
- 3. Referring to Fig. 3.10, connect the sample outlet tube.

Fig. 3.8 Sensor Dimensions (With Optional Wiper Unit)

Note. Allow a further 30 mm (1.2 in) (approximately) clearance above the wiper unit for the bend in the wiper unit cable.

Fig. 3.9 Sensor Dimensions (Without Optional Wiper Unit)

Fig. 3.10 7998 Series - Sample Outlet Connector Location

3.3.1 Sample Flowrate

Set a minimum flowrate of 0.5 I min^{-1} to prevent solids settling in the pipework. Increase the flowrate if necessary but **do not** exceed the maximum flow rate of 1.5 I min^{-1} .

When measuring turbidity, it is important that additional sources of light scattering, such as gas bubbles in the sample, are eliminated. An optional debubbler (part number 7997 500) is available to eliminate gas bubbles – refer to Section 3.4, page 10.

3.4 Installing the Optional De-bubbler

3.4.1 Mounting the De-bubbler

Note. The de-bubbler $\ensuremath{\text{MUST}}$ be mounted vertically with the flow upwards.

Fig. 3.11 De-Bubbler Mounting Information (Debubbler Part Number 7997 500)

3.4.2 Set Up Procedure for De-bubbler

With a system that includes a de-bubbler, referring to Fig. 3.12:

- 1. Open the 'sample in' isolating valve (A) such that the overflow from the de-bubbler is at a minimum.
- 2. Adjust the sample flow through the turbidity system using flow regulating valve (B).

Note. Sample regulating valves together with a flow indicator are recommended to ensure easy maintenance and consistent performance. These devices are not supplied with the 7998 Turbidity systems.

Fig. 3.12 Typical System Installation for 7998 Series Turbidity Systems

Caution.

- 1. To prevent degassing of the sample and very erratic readings, do not exceed this measurement.
- 2. This is the minimum installation distance that ensures adequate flowrate through the sensor. Increase this distance as necessary if using long or small-bore tubing.

4 Electrical Connections

Warning.

- The analyzer is not fitted with a switch an isolation device such as a switch or circuit breaker conforming to local safety standards must be fitted to the final installation. It must be fitted in close proximity to the analyzer, within easy reach of the operator and marked clearly as the isolation device for the analyzer.
- Remove all power from supply and relays before accessing or making any connections. Use cable appropriate for the load currents: 3-core cable rated 3 A and 75 °C (167 °F) minimum, and voltage: 100 / 240V that conform to either IEC 60227 or IEC 60245, or to the National Electrical Code (NEC) for the US, or the Canadian Electrical Code for Canada.
- Use cable appropriate to the load currents. The 4690 (wall mounted) and 4695 (panel mounted) terminals accept cables AWG 24 to 14 (0.2 to 2 mm²). All connections to secondary circuits must have insulation to required local safety standards. After installation, there must be no access to live parts, for example, terminals. Use screened cable for signal inputs and relay connections. Route signal leads and power cables separately, preferably in an earthed (grounded) flexible metal conduit.

USA and Canada only

- The supplied cable glands and use of cable / flexible cord for connection of the mains power source to the mains input and relay contact output terminals is not permitted in the USA or Canada.
- For connection to mains (the mains input and relay contact outputs), use only suitably rated field wiring insulated copper conductors rated min. 300 V, 16 AWG, 90 °C. Route wires through suitably rated flexible conduits and fittings.

Warning - Bodily injury

- If the analyzer is used in a manner not specified by the Company, the protection provided by the equipment may be impaired.
- The analyzer conforms to CEI/IEC 61010-1 Edition 3.1 2017-01 Installation Category II.
- All equipment connected to the analyzer's terminals must comply with local safety standards (IEC 60950, IEC 61010-1).

4.1 Access to Terminals

4.1.1 Wall- / Pipe-mount Analyzer

Referring to Fig. 4.1:

- (1) Slide cover down, pull out slightly and slide it off.
- (2) Release captive screws.
- (3) Remove protection cover.

Fig. 4.1 Access to Terminals - Wall- / Pipe-mount Analyzer

4.1.2 Panel-mount Analyzer

Referring to Fig. 4.2:

- (1) Remove securing nuts.
- 2) Remove cover.
- 3 Remove mains terminals protection cover.

Fig. 4.2 Access to Terminals – Panel-mount Analyzer

4.2 Safety Information

Warning. The power supply earth (ground) **must** be connected to ensure safety to personnel, reduction of the effects of RFI and correct operation of the power supply interference filter.

Note.

- Stud terminal(s) is (are) fitted to the analyzer case for bus-bar earth (ground) connection see Figs. 4.1, 4.4 and 4.5.
- The cable length between the turbidity sensor and the 4690 / 4695 analyzer is provided as ordered and terminated at the sensor. Shorten or lengthen the cable as required for the installation.
- Always route the signal cable and mains-carrying/relay cables separately, ideally in earthed (grounded) metal conduit.

Ensure that the cables enter the analyzer through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

- Ensure a moisture-tight fit when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes). The M16 glands ready-fitted to wall-mount analyzers accept cable of between 4 and 7 mm diameter.
- The relay contacts are voltage-free and must be connected appropriately in series with the power supply and the alarm/ control device that they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 4.2.1 for relay contact protection details when the relays are to be used for switching loads.
- Do not exceed the maximum load specification for the selected current retransmission range refer to Section 11, page 37.

The retransmission output is isolated therefore the -ve terminal **must** be connected to earth (ground) if connecting to the isolated input of another device.

4.2.1 Relay Contact Protection and Interference Suppression

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) that can cause analyzer malfunction and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for AC applications or diodes for DC applications. These components can be connected either across the load or directly across the relay contacts. On 4690 / 4695 analyzers, fit the RFI components to the relay terminal block together with the supply and load wires – see Fig. 4.3.

For AC applications, the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022 µF RC suppressor (part no. B9303) as shown in Fig. 4.3A. If the analyzer malfunctions (incorrect readings) or resets (display shows *B8888*) the value of the RC network is too low for suppression – use an alternative value. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For DC applications, fit a diode as shown in Fig. 4.3B. For general applications use an IN5406 type (600 V peak inverse voltage at 3A – part no. B7363).

NC C NO **Relay Contacts** NC C NO **Relay Contacts** 0 Q 0 Q 0 Q Diode IJ External + Loac Load External L AC Supply DC Supply A – AC Applications **B - DC Applications**

Note. For reliable switching, the minimum voltage must be greater than 12 V and the minimum current greater than 100 mA.

Fig. 4.3 Relay Contact Protection

4.3 Connections

Mounting	Terminal Number						
Wall	1	2	3	4	5	6	7
Panel	12	11	10	9	8	7	6
	Cleaner initiate pulse	+12 V Switched emitter supply	+12 V Cleaner / Receiver supply	Signal input	Cleaner detect signal		0 V common
						 Li	nk

Table 4.1 Analyzer Input Connections

4.3.1 Wall- / Pipe-mount Analyzer Connections

Note. Refer to Fig. 4.1, page 12 for access to terminals. Slacken terminal screws fully before making connections.

Fig. 4.4 Wall- / Pipe-mount Analyzer Connections

Note.

- 1. A second retransmission output is available if the RS485 serial communications facility is not used.
- 2. If Test Cleaner is set to YES (see page 28), Relay 2 becomes 'Failed Wiper Alarm' relay.

4.3.2 Panel-mount Analyzer Connections

Note.

- Refer to Fig. 4.2, page 12 for access to terminals.
- Slacken terminal screws fully before making connections.

Fig. 4.5 Panel-mount Analyzer Connections

Note.

- 1. A second retransmission output is available if the RS485 serial communications facility is not used.
- 2. If Test Cleaner is set to YES (see page 28), Relay 2 becomes 'Failed Wiper Alarm' relay.

4.3.3 Power Supply Connections

Referring to Figures 4.4, page 15 and 4.5:

Make connections to the power supply terminals as follows:

L (line), N (neutral), Stud on case (ground)

Note. Tighten terminal screws to a torque of 0.1 Nm (0.9 lbf.in).

Fig. 4.6 AC Power Supply Connections

4.4 Selecting the Mains Voltage

4.4.1 Wall- / Pipe-mount Analyzer

Referring to Fig. 4.7:

- (1) Slide cover down, pull out slightly and slide it off.
- (2) Release 4 captive screws.
- (3) Remove protection cover.
- (4) Remove 2 screw caps (if fitted).
- (5) Remove 6 front panel screws.
- 6 Remove front panel.
- (7) Set voltage selector switch as required.

Fig. 4.7 Selecting Mains Voltage - Wall- / Pipe-mount Analyzer

4.4.2 Panel-mount Analyzer

- Referring to Fig. 4.8:
- (1) Release captive screw.
- (2) Remove analyzer from its case.
- (3) Set voltage selector switch as required.

Fig. 4.8 Selecting Mains Voltage – Panel-mount Analyzer

4.5 Turbidity Sensor Connections

Fig. 4.9 Turbidity Sensor Junction Box Connections

5 Controls and Display

5.1 Display

The display comprises a 5-digit, 7-segment digital upper display line and a 16-character dot-matrix lower display line. The upper display line shows actual values of turbidity, temperature, alarm set points or programmable parameters. The lower display line shows the associated units or programming information.

5.2 Control Familiarization

Fig. 5.1 Controls and Display

Fig. 5.2 Membrane Key Functions

6 Operation

6.1 Analyzer Start-up

Ensure all electrical connections have been made and switch on the power supply. If the system is being commissioned for the first time, calibration (refer to Section 7, page 20) and parameter programming (refer to Section 8.3, page 27) are required.

6.2 Operation – Turbidity Measurement Mode

Operation in the Turbidity measurement mode comprises an **Operating** page and a **Turbidity Calibration** page. The **Operating** page is a general use page in which parameters are viewed only and cannot be altered. To alter or program a parameter, refer to the programming pages in Section 8. The **Turbidity Calibration** page enables a calibration to be carried out. A 5-digit calibration code is used to prevent unauthorized access to the **Turbidity Calibration** page. The value is preset at 00000 to allow access during commissioning, but should be changed to a unique value, known only to authorized operators, in the **Set Up Outputs** page – see page 30.

6.2.1 Operating Page

Measured Turbidity (Units)

The measured turbidity value is displayed in the units selected in the Set Up Parameter page – see Section 8.3, page 27.

Press 🗊 to advance to next page

or

Press 1 to advance to next parameter.

Sensor Voltage

The sensor voltage displayed is the output from the optical receiver. The optical system (the emitter and the receiver) are configured to produce the 0 to 3 V outputs from zero to full scale, providing an indication of the performance of the optical system.

Alarm 1 Set Point

The set point value and relay / LED action are programmable - refer to Section 8.4, page 29.

Alarm 2 Set Point

The set point value and relay / LED action are programmable - see refer to Section 8.4, page 29.

Manual Clean

Note. Displayed only if the turbidity sensor is fitted with a wiper unit – see Table 2.1, page 3.

Press the key to initiate a manual clean. Manual Clean Yes is displayed for one minute. The automatic clean sequence is then reset and Manual Clean No displayed.

Advance to Calibration page – see Section 7, page 20.

7 Calibration

A key feature of the 4690 Series Turbidity system is the dry secondary calibration standard. This is designed to simplify routine calibration verification and minimizes the need for chemical standards.

Each dry calibration standard is verified against a primary formazine standard before delivery and the nominal turbidity value is indicated on the label.

For regulatory monitoring, use the secondary calibration standard for monthly calibration verification and monitor it for deterioration periodically using a primary standard.

Definitions

Primary Standards

Turbidity standards that are traceable and equivalent to the reference turbidity standard, within statistical errors. Formazine is the most commonly acceptable form of primary standard. The other is a commercially manufactured liquid suspension of Styrene divinylbenzene polymer beads (SDB). Primary standards are used to calibrate a turbidity analyzer directly or to calibrate a secondary standard.

Secondary Standards

Standards that the manufacturer (or an independent testing organization) has certified give analyzer calibration results equivalent (within certain limits) to the results obtained when the analyzer is calibrated with a primary standard.

Calibration

A procedure that checks or adjusts an analyzer's accuracy by comparison with a defined standard or reference.

Calibration Verification

A procedure used to check whether or not the calibration of the analyzer is within certain limits.

7.1 Care and Maintenance of Secondary Standards

ABB's secondary standards may be used repeatedly but must be monitored for deterioration.

All secondary standards can change gradually with time. Deterioration can be detected by measuring the turbidity value of the secondary standard after calibration of the analyzer with a primary calibration standard.

It is recommended that secondary standards are rechecked against a primary standard on the analyzer they are intended to be used with every 3 months.

If comparison with a primary standard shows that the turbidity value of the secondary standard has changed the secondary standard can be assigned a new turbidity value for use in future calibration verification.

Included with each sensor is a calibration record card kit for recording the value of the secondary standard compared to the primary calibration data for each individual analyzer with which the secondary standard is used.

Additional calibration record card kits can be purchased from ABB (part no. 7998190 for pack of 3).

,		
Time/Date of Primary Calibration	Dry Standard Reading after Primary Calibration (NTU)	Performed By
Time/Date of Primary Calibration	Dry Standard Reading after Primary Calibration (NTU)	Performed By
Time/Date of Primary Calibration	Dry Standard Reading after Primary Calibration (NTU)	Performed By
Time/Date of Primary Calibration	Dry Standard Reading after Primary Calibration (NTU)	Performed By

Fig. 7.1 Example of Calibration Record Card

To minimize deterioration of the secondary standard:

- Carefully wipe off any residual moisture after use.
- Clean the prism with lint-free cloth.
- Avoid direct contact with the dry standard rod fingerprints on the surface may alter its stated value.
- Store in the container provided when not in use and keep in a dry place.

7.2 Performing a Calibration Verification with a Secondary Standard

To check the calibration:

- 1. Close the isolating valve installed upstream of the sensor.
- 2. Close the sensor inlet valve and open the drain valve. Allow the sensor to drain.
- 3. Carefully remove the wiper unit (7998 011 and 012) or the wiper plug (7998 016 and 017) to aid complete drainage of the system. When the system is empty, close the drain valve.

Caution. When removing the wiper unit **do not** put excessive leverage on the wiper as there is a risk of bending the wiper arm out of 90 °. On removal of wiper, check wiper arm has not been bent.

- 4. Thoroughly dry the flow chamber internally using clean tissue.
- 5. Thoroughly clean and dry the emitter and receiver lenses using clean tissue.

Note. If condensation forms on the emitter and receiver lenses, leave the sensor open to enable the lenses to reach ambient temperature before attempting calibration.

6. Insert the dry calibration standard with the zero NTU indication (see Figs 7.2 or 7.3) facing the optical receiver, ensuring the locating lug engages correctly – see Fig. 7.4.

Fig. 7.2 Dry Calibration Standard for Low Range Sensors

Fig. 7.3 Dry Calibration Standard for High Range Sensors

Fig. 7.4 Inserting Dry Standard

7. Note the reading on the display.

- 8. Remove the dry standard, rotate it through 180° and refit it, ensuring that the NTU value indication (see Figs 7.2 or 7.3) faces the receiver and the locating lug engages correctly – see Fig. 7.4.
- 9. Note the reading on the display.
- 10. If the readings noted at steps 7 and 9 exceed ± 5 % of dry standard value, repeat the procedure from step 4. If readings are still outside this range, calibrate the sensor.
- 11. Remove the dry standard and place it in its storage container.
- 12. Refit the wiper unit (7998 011 and 012) or wiper plug (7998 016 and 017).
- 13. Open the inlet valve and ensure that the flow through the sensor is 0.5 to 1.5 $\rm I\ min^{-1}$

7.3 Performing a Calibration with a Primary Standard

Note. Before performing a wet standard calibration, ensure a stock formazine solution is available. If a stock solution is not available, 24 hours must elapse before a freshly-prepared solution can be used.

To prepare the sensor assembly for wet (Formazine) calibration:

- 1. Close the isolating valve installed upstream of the sensor.
- 2. Close the sensor inlet valve and open the drain valve. Allow the sensor to drain.
- 3. Carefully remove the wiper unit (7998 011 and 012) or the wiper plug (7998 016 and 017) to aid complete drainage of the system. When the system is empty, close the drain valve.

Caution. When removing the wiper unit **do not** put excessive leverage on the wiper as there is a risk of bending the wiper arm out of 90 $^{\circ}$. On removal of wiper, check wiper arm has not been bent.

- 4. Thoroughly dry the flow chamber internally using clean tissue.
- 5. Thoroughly clean and dry the emitter and receiver lenses using clean tissue.

Note. If condensation forms on the emitter and receiver lenses, leave the sensor open to enable the lenses to reach ambient temperature before attempting calibration.

6. Insert the dry calibration standard with the zero NTU indication (see Figs 7.5 or 7.6, page 23) facing the optical receiver, ensuring the locating lug engages correctly – see Fig. 7.7.

Note. Do not touch the light reflecting parts of the standard.

Fig. 7.5 Dry Calibration Standard for Low Range Sensors

Fig. 7.6 Dry Calibration Standard for High Range Sensors

Fig. 7.7 Inserting Dry Standard

7 Calibration

7. Calibrate the sensor as follows:

	Sensor Calibration
	Press 🗊 to advance to next page
SENSOR CAL.	or
1	Press 1 to advance to next parameter.
	Calibration Security Code
Cal. User Code	Enter the required calibration code number, between 00000 and 19999. If an incorrect value is entered, access to calibration is prevented and the SENSOR CAL. page is displayed.
	Dry Standard Calibration
Formazine Std.	Press the result is select Formazine Std.
DRY CAL. STD.	
1	
0.0	Zero Calibration
Zero Calibration	
1	Press the 1 key. The display changes to Calibrating Zero .
	Calibrating Zero
Calibrating Zero	After approximately one minute, the display changes to Fill Span Sol. if zero calibration is successful.
	If Cal Fail is displayed, remove the dry standard and ensure the emitter and receiver lenses are clean and dry. Refit the dry standard, ensuring it is fitted correctly (see step 6, page 22) and repeat the procedure.
	Note. Do not touch the light reflecting parts of the standard.
	 Continued on next page.

Continued from previous page

Fill Span Solution

- 1. Remove the dry standard and place it in its storage container.
 - Note. Do not touch the light reflecting parts of the standard.
- 2. Fill the flow chamber with the formazine span solution and refit the wiper unit or wiper plug.
- 3. Using the 🔊 and 💌 keys, set the display to the NTU value of the formazine span solution.
- 4. Press the **1** key. The display changes to **Calibrating Span**.

Note. If span calibration is not required, press the 1 key again to advance to Cal. Complete.

Calibrating Span

After approximately one minute, the display changes to Cal. Complete if calibration is successful.

- 1. Remove the wiper unit or wiper plug.
- 2. Drain the flow chamber, ensuring all the formazine span solution is removed.
- 3. Refit the wiper unit or wiper plug and open the inlet valve.

If Cal Fail is displayed, drain the flow chamber, remove the wiper unit or wiper plug and clean the emitter and receiver lenses. Repeat the calibration procedure ensuring that an in-date or fresh formazine solution is used and that the Fill Span Solution parameter is set to the NTU value of the formazine span solution.

Advance to Access to Configuration pages - see Section 8.1, page 26.

8 Configuration and Electrical Calibration

8.1 Access to Configuration Pages

A 5-digit security code is used to prevent unauthorized access to the configuration pages.

Security Code

Enter the required code number, between 00000 and 19999, to gain access to the configuration
 pages. If an incorrect value is entered, access to subsequent configuration pages is prevented and the Operating Page is displayed.

Advance to Language page - see Section 8.2 below.

8.2 Language Page

8.3 Set Up Parameter Page

Continued from previous page

¥	
	Cleaning Interval
	Note. Displayed only if Sensor Type is set to 7998-011 or 7998-012.
Clean Int. (Hr)	Using the 🗻 and 💌 keys, select the cleaning interval required. Values available are: 15 mins, 30 mins, 45 mins, 1 hr, then 1 hour increments to a maximum of 24 hours.
· · · · · · · · · · · · · · · · · · ·	Test Cleaner
	Note. Displayed only if Sensor Type is set to 7998-011 or 7998-012.
Test Cleaner NO YES	Select \ensuremath{YES} to activate the wiper unit diagnostics function and enable visual indication of wiper unit function.
	Select No to deactivate the wiper unit diagnostics function.
Ţ	Bubble Rejection
	Use in applications where degassing of the sample takes place.
Bubble Rej. NO YES	When set to YES, the analyzer ignores short duration spikes in the turbidity reading caused by the formation of small bubbles in the flowcell due to degassing.
	Bubble Period
Ľ ́́́́́́́́ Ľ ́ Bubble Period ▼	Note. Displayed only if Bubble Rej. is set to YES
Return to	Using the \blacktriangle and \bigtriangledown keys, adjust the value to between 2 and 60 seconds until short duration spikes are no longer seen on the display.
top of page	Note. A value of 20 seconds is normally sufficient for most applications.
	Signal Filter
	Use in applications where the turbidity readings are noisy.
Signal Filter	Using the \blacksquare and \blacktriangledown keys, adjust the value to between 4 and 180 seconds.
 _	Note. If Bubble Rej. is set to YES, set a value of 4 seconds for optimum performance.
	Advance to Set Up Outputs page – see Section 8.4, page 29.

8.4 Set Up Outputs Page

Set Up Outputs

Press p to advance to next page

```
or
```

Press 1 to advance to next parameter.

Alarm 1 Action

For 'Fail-safe' alarm operation the relay's alarm state must be the same as the power-down state, (the relay is de-energized).

For high alarm operation the relay must be Energized Below (EB) the alarm set point.

For low alarm operation the relay must be Energized Above (EA) the alarm set point.

The alarm LEDs are lit in the alarm condition.

Select the required alarm 1 action from the following table:

Alarm Action	LED Condition for Input Above Set Point	LED Condition for Input Below Set Point	Relay Condition for Input Above Set Point	Relay Condition for Input Below Set Point
EB	ON	OFF	De-energized	Energized
EA	OFF	ON	Energized	De-energized

The set point band is defined as the actual value of the set point plus or minus the hysteresis value. The hysteresis value is ± 1 % of the set points. Alarm action occurs if the input value is above or below the set point band. If the input moves within the set point band the last alarm action is maintained.

Alarm 1 Set Point

Using the A and V keys, set the alarm 1 set point to any value within the selected display span – see **Display Span** on page 27. The set point value is subject to hysteresis as detailed above.

Alarm 2 Action

Note. Displayed only if Test Cleaner is not set to YES – see Test Cleaner on page 28 (set automatically to Wiper Unit Failed Alarm if Test Cleaner is set to YES).

Repeat as for Alarm 1 Action above.

Alarm 2 Set Point

Note. Displayed only if Test Cleaner is not set to YES – see Test Cleaner on page 28 (set automatically to Wiper Unit Failed Alarm if Test Cleaner is set to YES).

Repeat as for Alarm 1 Set Point above.

Retransmission Type

Using the \blacktriangle and \bigtriangledown keys, select the retransmission current output range required, from 0 to 10, 0 to 20 or 4 to 20 mA.

The current output range is assigned to the selected display span – see Display Span on page 27.

Continued on next page.

Continued from previous page

	¥	
		Hold Outputs during Calibration
	Hold Outputs NO YES	Select YES to hold the retransmission and alarm outputs to prevent inadvertent operation during calibration.
T	, <u> </u>	Test Retransmission Output
	Test Retrans (%) ▼	range selected on page 29. The % test signal selected is shown on the upper display.
Re	turn to	$\ensuremath{\text{Example}}$ - for a selected range of 0 to 20 mA and 50 % retransmission test signal, 10 mA is transmitted.
top	o of page	Select the required retransmission test signal.
T.	•	
		Alter Configuration Security Code
	Alter Sec. Code	Set the security code to a value between 00000 and 19999.
	₹	
		Alter Calibration Security Code
	Alter Cal. Code	Set the security code to a value between 00000 and 19999.
	SERIAL INTERFACE	Advance to Set Up Serial Interface page.

8.5 Set Up Serial Interface Page

8.6 Electrical Calibration

Caution. The analyzer is calibrated by the Company prior to despatch and an electrical calibration should not be necessary. If an electrical calibration is carried out, suitably calibrated and verifiable test equipment must be used.

8.6.1 Equipment Required

- 1. Millivolt source: 0 to 4000 mV.
- 2. Digital milliammeter (current output measurement): 0 to 20 mA.

8.6.2 Preparation

1. Isolate the analyzer and turbidity sensor from the power supply and disconnect the sensor and current output from the analyzer's terminal block – see Fig. 4.4, page 14 (wall-/pipe-mount analyzer) or Fig. 4.5, page 15 (panel-mount analyzer).

2. Wall- / Pipe-mount Analyzer

- a. Connect the millivolt source '+' and '-' to terminals 4 and 7 respectively.
- b. Connect the milliammeter to the retransmission output terminals.
- c. Ensure the earth on the millivolt source is connected to the earth stud.

Panel-mount Analyzer

- a. Connect the millivolt source '+' and '-' to terminals 9 and 6 respectively.
- b. Connect the milliammeter to the retransmission output terminals.
- c. Ensure the earth on the millivolt source is connected to the earth stud.
- 3. Switch on the supply and allow ten minutes for the circuits to stabilize.
- 4. Select ELECTRICAL CAL page and proceed as in Section 8.6.3, following.

8.6.3 Electrical Calibration Page

In this section the actual values denoted by 'xxxxx' are unimportant and are used only to determine display reading stability when carrying out the electrical calibration procedure.

9 Maintenance

The servicing schedule in Table 9.1 is a guide only. Because the turbidity systems are designed for a wide range of applications, where the nature of the sample can vary considerably, it may be necessary to amend the schedule to suit the particular installation and sample conditions.

Task	Recommended Frequency
Wiper blade replacement	Quarterly
LED light source (ISO 7027) replacement kit	Every 5 years

Table 9.1 Suggested Maintenance Schedule

9.1 Sensor Cleaning

9.1.1 Sensors Without Wiper Unit

These sensors are normally used on clean water samples and, under normal conditions, may require only manual monthly cleaning of the flow chamber. However, if a high turbidity breakthrough occurs, clean the flow chamber immediately to ensure accurate readings.

9.1.2 Sensors With Wiper Unit

The required automatic cleaning frequency of the flow chamber and optical windows of the sensors can be determined only by plant experience. It is recommended that checks are made at appropriate intervals.

10 Fault Finding

10.1 Error Messages

If erroneous or unexpected results are obtained, the fault may be indicated by an error message – see Table 10.1. The majority of problems are overcome by thorough cleaning of the flowcell optical windows and / or a sensor calibration.

Error Message	Description and Remedy
Cal Fail	Indicates that the expected step change between a zero and span calibration was not produced by the sensor (zero response from the sensor).
	1. Repeat calibration.
	2. If using a dry calibration standard, ensure that the optical windows on the dry standard are clean and dry.
	3. If using solutions:
	Check that the flowcell has been thoroughly cleaned and rinse well between solutions
	Check both zero and formazine solutions
	4. Check electrical connections to sensor.
	5. Using a suitable voltmeter, check the sensor 12 V supplies, both at the analyzer terminals and sensor junction box – see Table 4.1 on page 14 for details.
	6. Check the analyzer's response to an electrical input by injecting 0 and 3 V into the following terminals and noting the reading displayed in Sensor Voltage in the Operating page (see Section 6.2.1, page 19):
	Wall- / pipe-mount-ve to terminal 7 +ve to terminal 4
	Panel-mount -ve to terminal 6 +ve to terminal 9
	Small errors in displayed voltage can be removed by electrical calibration. Large errors indicate an electronic fault.
Cleaner Fail	Indicates that the analyzer was unable to detect the correct operation of the wiper unit; either the wiper unit did not rotate or failed to park in the correct position.
	1. Check the electrical connections to the sensor.
	 Using a suitable voltmeter, check the sensor 12 V supplies, both at the analyzer terminals and sensor junction box – see Figs 4.4, 4.5 and 4.9 on pages 14, 15 and 17 for connection details.
	3. Check operation of the wiper unit by disconnecting the white lead from the analyzer terminal block (Cleaner Initiate signal) and touching it briefly to the 0 V terminal – see Table 4.1 on page 14 for details. This initiates a cleaning cycle, that can be observed when the wiper unit is removed from the flowcell.
NV Memory Error	Indicates that the contents of the nonvolatile memory has not been read correctly during power up. To rectify the problem, switch off the power, wait 10 seconds and switch on again. If the problem persists contact the Company.

Table 10.1 Error Messages

10.2 Unstable or Erratic Readings

There are a number of possible causes of unstable or erratic readings. Check for air bubbles in the sample. This may be due to degassing of the sample, caused by either a drop in sample pressure or a rise in temperature. Frequent cleaning of the optical windows helps to prevent the build-up of bubbles. If bubbles are observed it is recommended that the optional debubbler unit is installed – see Section 3.4, page 10.

Where the noise level gradually gets worse over a period of time, this usually indicates that solids are building up in the flowcell. Increasing the flowrate through the flowcell may reduce this build up. Ultimately the flowcell needs to be cleaned manually.

10.3 Intermittent Short Term Spikes in Turbidity Readings

This is usually caused by bubbles passing through the light path within the flowcell. The bubbles are a result of degassing. Degassing is not an instantaneous process and it is possible that it is taking place after the sample has gone through the debubbler. The bubbles start to form in the sample pipework and the flowcell. As they grow gradually, the bubbles finally release and flow through the light path, causing a spike in the turbidity reading.

The analyzer can be programmed for Bubble Rejection to remove short-term spikes from the readings – see page 28. For optimum operation, operate the wiper unit frequently to prevent bubbles building up on the windows.

11 Specification

Sensor

Range

Low range 0 to 40 NTU High range 0 to 400 NTU

Measurement principle

90 ° scattered light measurement. Compliant to ISO 7027

Maximum linearity

Typically <1.0 %

Accuracy11, 2

Low range version ±2 % of reading

High range version ±5 % of reading or 0.3 NTU

Repeatability³

0 to 200 NTU <1 %

200 to 400 NTU 2 %

Limit of Detection⁴

Low range version: 0.003 NTU High range version: 0.3 NTU

Response time

 $T90 < 1 \text{ min at } 1 \text{ l/min}^{-1}$

Flow rate

0.5 to 1.5 l/min (0.13 to 0.39 gall [US]/min)

Integral wiper cleaning system

Programmable operational frequency every 0.25 hour, 0.5 hour, 0.75 hour or multiples of 1 hour up to 24 hours

Sample operating temperature

0 to 50 °C (32 to 122 °F)

Sample pressure

Up to 3 bar (43.5 psi)

Ambient operating temperature

0 to 50 °C (32 to 122 °F)

Ambient operating humidity

Up to 95 % RH

¹Maximum measured error across full measurement range (limited by uncertainty in Formazine standards).

²Tested in accordance with IEC 61298 Parts 1-4: Edition 2.0 2008-10.

³Tested in accordance with MCERTS: Performance Standards and Test Procedures for Continuous Water Monitoring Equipment. Version 3.1: Environment Agency 2010.

⁴Tested in accordance with BS ISO 15839: 2003.

Wetted parts - materials used

Cell body unit

- Black POM (Polyoxymethylene) Copolymer
- Spectrosil 2000 fused silica
- Nitrile (O-ring)
- Epoxy preform (cured) Uni-forms 5034-00
- Polyamide 6
- Nickel plated brass
- PTFE

Wiper unit

- Black Polycarbonate, 10% Glass Fibre filled Lexan 500R
- Stainless Steel (SS 316 S13/S11) w/ Chemical Black MIL-C13924 class 4
- Silicone grease (WRC Approved) Unisilkon L 250 L
- 2-part Epoxy Adhesive (cured) Robnor PX800F/NC
- EPDM (ethylene propylene diene Monomer) black

Turbidity systems

Measured value

5-digit x 7-segment backlit LCD

Information

16-character, single line, dot matrix, backlit LCD

Units of measurement

All models: NTU and FNU

mg/l and ppm for models high range models

Accuracy ±0.2 % of reading, ±1 digit

Linearity ±0.1 % FSD

Auto-clean timing (7998011, 7998012) Programmable 15 min, 30 min, 45 min or 1 hour up to 24 hours in 1 hour increments

Environmental Data

Operating temperature limits

-20...55 °C (-4...131 °F) Storage temperature limits

–25...55 °C (–13...131 °F) Operating humidity limits

Up to 95 % RH non-condensing

Power Supply

Voltage requirements 100 to 130 V, 200 to 260 V, 50 / 60 Hz*

Power consumption < 12 VA

Error due to power supply variation

Less than 0.1 % for +6 % –20 % variation from nominal supply

Insulation

Mains to earth (line to ground) 2 kV RMS

*See Selecting the Mains Voltage, Section 4.4, page 16

Relay Outputs and Set Points

No. of relays

Relay contacts

Single pole changeover Rating 250 V AC 250 V DC max.

3 A AC, 3 A DC max.

Loading (non-inductive) 750 VA 30 W max.

(inductive) 750 VA 3 W max.

Insulation

2 kV RMS contacts to earth (ground)

No. of set points

2

Set point adjustment Programmable

Set point hysteresis

±1 % fixed

Local set point annunciation Red LED

Retransmission

No. of retransmission signals

One fully isolated programmable 0 to 10 mA, 0 to 20 mA or 4 to 20 mA Optional second current output

Accuracy

±0.25 % FSD ±0.5 % reading

Resolution

0.1 % at 10 mA, 0.05 % at 20 mA

Max. load resistance

750 Ω (20 A max.)

Mechanical Data Model 4690/500

	Wall-mounting	
	Protection	IPx6/NEMA4X
	Dimensions	160 mm (6.30 in.) wide x 214 mm (8.43 in.) high x 68 mm (2.68 in.) deep
	Weight	2 kg (4½ lb)
Model 4695/500		
	Panel-mounting	(¼ DIN)
	Protection	IP66/NEMA4X front
	Dimensions	96 mm (3.78 in.) wide x 96 mm (3.78 in.) high x 191 mm (7.52 in.) deep
	Weight	1.5 kg (3¼ lb)
	Panel cut-out:	$92^{+0.8}_{-0}$ mm x $92^{+0.8}_{-0}$ mm (3.62^{+0.03}_{-0} in. x 3.62 ^{+0.03} in.)

Approvals, Certification and Safety CE Mark

Covers EMC & LV Directives (including latest version EN 61010)

General safety

EN61010-1 Pollution Degree 2 Insulation Category II

EMC

Emissions and Immunity

Meets requirements of IEC 61326 for an industrial environment and domestic emissions

DS/4690-EN Rev. C

12 Spares and Consumables

12.1 Maintenance Kits

Part Number	Description	Kit Contents
7998023	Wiper blade pack	4 x 7997203
7998044	Replacement LED kit (ISO infrared LED version)	1 x 7998126, 1 x 7998021

12.2 Accessories

Part Number	Description	Kit Contents
7998047	Dry standard LOW for use with ISO infrared LED version	7998181 dry standard + calibration certificate
7998048	Dry standard HIGH for use with ISO infrared LED version	7998183 dry standard + calibration certificate

12.3 Upgrade Kits

Part Number	Description	Kit Contents
7998022	Wiper unit upgrade kit	1 each of: 7998140 0216580 – cable gland and locknut 7998023 – wiper blade pack 7998317 – wiper cap

12.4 Strategic Spares

Part Number	Description	Kit Contents
7998024	Feed/drain kit	1 x 7998149, 2 x 0216509, 2 x 0216510
7998026	Emitter unit (ISO infrared LED version)	1 x 7998101
7998029	Receiver unit (infrared LED 0 to 40 NTU)	1 x 7998107
7998030	Receiver unit (infrared LED 0 to 400 NTU)	1 x 7998108
7998037	Replacement ball valves	2 x 0216509
7998038	Replacement hose connectors	2 x 0216510
7998039	Replacement wiper O-ring	2 x 0211346
7998031	O-ring spares kit	1 each of: 0211051, 0211317, 0211346 2 each of: 0211223, 0211314,
7998021	Replacement endcaps	2 x 7998130
7998020	Wiper plug assembly	1 x 7998148
7998190	Cal record card kit	3 x 7998385 – cal record card kit 1 x 0219319 – Vispass bespoke 1 x STT3367 – 250 mm (10 in.) cable tie
7998049	Wiper unit replacement	1 x 7998140 – wiper unit 1 x 7998023 – wiper blade pack

12.5 Software

Part Number	Description	Kit Contents
7998040	7998 Turbidity EPROM (basic)	1 x 46803000 BASIC
7998041	7998 Turbidity EPROM (second retransmission)	1 x 46803001 2ND RETRANS
7998042	7998 Turbidity EPROM (Modbus)	1 x 46803002 MODBUS
7998043	7998 Turbidity EPROM (PROFIBUS)	1 x 46803003 PROFIBUS

12.6 De-bubbler

Item	Description	Part Number
1	O-ring large (3 off)	0211 322
2	O-ring small (2 off)	0211 138
3	Quick-fit connector (2 off)	7997 511

Products and customer support

Automation Systems

- For the following industries:
- Chemical & PharmaceuticalFood & Beverage
- Manufacturing
- Manufacturing
 Metals and Minerals
- Oil, Gas & Petrochemical
- Pulp and Paper

Drives and Motors

- AC and DC Drives, AC and DC Machines, AC Motors to 1kV
- Drive Systems
- Force Measurement
- Servo Drives

Controllers & Recorders

- Single and Multi-loop Controllers
- Circular Chart and Strip Chart Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation

Industrial Robots and Robot Systems

Flow Measurement

- Electromagnetic Flowmeters
- Mass Flowmeters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers

- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics

- Process Gas Analysis
- Systems Integration

Transmitters

- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners

- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation

- pH, Conductivity and Dissolved Oxygen Transmitters and Sensors
- Ammonia, Nitrate, Phosphate, Silica, Sodium, Chloride, Fluoride, Dissolved Oxygen and Hydrazine Analyzers
- Zirconia Oxygen Analyzers, Katharometers, Hydrogen Purity and Purge-gas Monitors, Thermal Conductivity

Customer support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

UK ABB Limited Tel: +44 (0)1453 826661 Fax: +44 (0)1453 829671

USA ABB Inc. Tel: +1 215 674 6000 Fax: +1 215 674 7183

ABB Limited

Measurement & Analytics Oldends Lane, Stonehouse Gloucestershire, GL10 3TA UK Tel: +44 (0)1453 826661

Fax: +44 (0)1453 829671 Mail: instrumentation@gb.abb.com

ABB Inc.

Measurement & Analytics

125 E. County Line Road Warminster, PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

abb.com/measurement

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:

- A listing evidencing process operation and alarm logs at time of failure.
- Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. © ABB 2018

