$1 / 16-1 / 8-1 / 4$ DIN LIMIT CONTROLLERS
CONCISE PRODUCT MANUAL (59333-1)
CAUTION: Installation should be only performed by technically competent personnel. Local Regulations
regarding electrical installation \& safety must be observ INSTALLATION
T. Todels covered by this manual have three different DIN case sizes refer to
section 9). Some installation details vary between models. These differences have been clearly shown.
Note: The functions described in sections 2 thru 8 are common to all models. Installing Option Modules

To access module A, first detach the PSU and CPU boards from the front by lifting
first the upper, and then lower mounting struts. Gently separate the boards. first the upper, and then lower mounting struts. Gently separate the boards.
a. Plug the required option modules into the correct connectors as shown below.
b. a. Plug the required option modules into the correct oconectors, as ssown below.
b. Locate the modul tongues in the oorresponding solt on the oposite borrd.
c. Hold the main boards together while relocating back on the mounting struts.
 Replace the instrument by aligning the CPU and PSU boards wh
in the housin, hhen slowly push the instument back into positio
Note: Option modules are automatically detected at power up.
Option Module Connectors

Panel--Mounting
The mounting panel must be igid, and may be up to
$6.0 \mathrm{~mm}(0.25$ inch $)$ thick. Cut-out sizes are:

 For n multiple instruments mounted side-by-side, cut-out
A is $48 n-4 m m(1 / 16 \& 1 / 8$ Din or $96 n-4 m m(1 / 4$ Din $)$ Tolerance $+0.5,-0.0 \mathrm{~mm}$

CAUTION: Do not remove the panel gasket; it is a seal against dust and
moisture.
Rear Terminal Wiring
USE COPPER CONDUCTORS (EXCEPT FOR TIC INPUT) $1 / 16$ Din Size. Nax 1.2 mm (18 $\overbrace{-}^{\text {OPTION } 3}$

 These diagrams show all possible option combinations. The actual
connections required depends on the exact model and options fitted. CAUTION. Check information label on housing for correct operating
voltage before connecting supply to Power Input

Note: At first power-up the message Coto Conf is displayed, as described in
section 6 of this manual. Access to other menus is denied until configuration section 6 of this man
mode is completed

Parameter	Lower Display	$\begin{array}{\|l\|l} \hline \text { Upper } \\ \text { Display } \end{array}$	Adjustment range \& Description	Default Value
Alarm 2 Type*	flat	Options as for alarm 1		P_Lo
High Alarm 2	Phat			Range Max
Low Alarm 2	PLRE			Range Min
Band Alarm 2 value	bfle			
Dev. Alarm 2	dfle			
Alarm 2	AHYE			
Output 2 Usage	USE2	LINE	Limit Output Relay	A I_d
		Al.d	Alarm 1, Direct	
		Alor	Alarm 1, Reverse	
		AL.d	Alarm 2, Direct	
		AL_r	Alarm 2, Reverse	
		Or-d	Logical Alarm 1 OR 2, Direct	
		Drar	Logical Alarm 1 OR 2, Reverse	
		Addd	Logical Alarm 1 AND 2, Direct	
		Ad_r	Logical Alarm 1 AND 2, Reverse	
		An-d	Limit Annunciator, Direct	
		An_r	Limit Annunciator, Reverse	
		rEtS	Retransmit Limit SP Output	rete
		rEtP	Retransmit PV Output	
$\begin{aligned} & \text { Linear Output } 2 \\ & \text { Range } \end{aligned}$	Eype	0.5	0 to 5 VDC output 1	0.10
		0. 10	0 to 10 V DC output	
		2. 10	2 to 10 VDC output	
		0.20	0 to 20 mA DC output	
		4.20	4 to 20 mA DC output	
Retransmit			-1999 to 9999	
Output 2 Scale maximum	roch		splay value at which output will be maximum)	Range max
Retransmit Output 3 3cale minimum	rocL		-1999 to 9999 (display value at which output will be minimum)	Range min
Output 3 Usage	U56		As for output 2	AI_d
Linear Output 3 Range	E4P3		As for output 2	10
Retransmit			-1999 to 9999	
Output 3 Scale maximum	ro3H		display value at which output	Range max
Retransmit Otuppt 3 Scale minimu minimum	ro3L		$\begin{aligned} & -1999 \text { to } 9999 \\ & \text { display value at which output } \\ & \text { will be minimum) } \end{aligned}$	Range min
Display Strategy	d ${ }^{\text {sp }}$	Enfb	$P V$ is visible in Operator mode	Enfb
Display Strategy	disp	d, 5R	PV not visible in Operator mode	Enfo
$\begin{array}{\|l\|} \text { Serial } \\ \text { Communications } \\ \text { Protocol } \end{array}$	Prot	A5C 1	ASCII	rnbor
		Mftn	Modbus with no parity	
		PTbe	Modbus with Even Parity	
		लfbo	Modbus with Odd Parity	
$\begin{aligned} & \text { Serial } \\ & \text { Communications } \\ & \text { Cit Rate } \end{aligned}$	bfud	1.2	1.2 kbps	4.8
		2.4	2.4 kbps	
		4.8	4.8 kbps	
		9.6	9.6 kbps	
		19.2	19.2 kbps	
Comms Address	Addr		O255 (Modbus), 1 to 99 (ASCII)	
		r.uj	Read/Write	r_tut
		r_0	Read only	
Configuration ock Code	CLoc		0 to 9999	0

Notes: Output 1 is always a Latching Limit Relay output

.
 reading, negative values are subtracted. This parameter
a calibration adjustment and MUST be used with care. There is no front panel indication of when this parameter is in use.

4. SETUP MODE			
Note: Configuration must be completed before adjusting Setup parameters. First select Setup mode from Select mode (refer to section 2). The Setup LED S will light while in Setup mode. Press to scroll through the parameters, then press Δ or ∇ to set the required value. To exit from Setup mode, hold down \square and press Δ to return to Select mode. Note: Parameters displayed depends on how instrument has been configured.			
Parameter	$\begin{aligned} & \text { Lower } \\ & \text { Display } \end{aligned}$	Upper Display Adjustment Range \& Description	$\begin{aligned} & \text { Default } \\ & \text { Value } \end{aligned}$
Limit Setpoint value	5P	Scaled Range Minimum to scaled Range Maximum	$\mathrm{R} / \mathrm{max}$ $\mathrm{Ct} \mathrm{L}=\mathrm{H}$$\mathrm{R} /$ min CtrL
Limit Hysteresis	HYSE	1 LSD to full span in display units, on the safe side of the limit SP	
Input Filter Time Const	F ite	OFF or 0.5 to 100.0 secs (see CAUTION note below)	
High Alarm 1 value	Phal		R/max
Low Alarm 1 value	PLAI	scaled Range Maximum	
Deviation Alarm 1 Value	dill	\pm Span from SP in display units	
Band Alarm 1 value	bRLI	1 LSD to span from setpoint	
Alarm 1 Hysteresis	AHYI	1 LSD to full span in display units	
High Alarm 2 value	Phat	Scaled Range Minimum to	
Low Alarm 2 value	PLAE	led Range Maximum	R/min
Devia	dfle	\pm Span from SP in display units	
Band Alarm 2 value	bfle	1 LSD to span from setpoint	
Alarm 2 Hysteresis	AHY2	1 LSD to full span in display units	
Setup Lock Code	Stoc	0 to 9999	

! $\begin{aligned} & \text { CAUTION: An excessively large filter time could significantly delay } \\ & \text { detection of a limit condition. Set this value to the minimum required }\end{aligned}$

Parameter	$\begin{aligned} & \hline \text { Lower } \\ & \text { Display } \end{aligned}$	Upper Display	Descripti
Input type	In_1	Un!	Universal in
Option 1 type (fixed)	OPn 1	rLY	Latching Limit Relay
Option 2 module type fitted	OPne	nonE	No option fitted
		r rly	Relay output
		55	SSR drive output
		tr	Triac output
		Lin	Linear DC voltage / current output
Option 3 module type fitted	0Pn3	nonE	No option fitted
		rLY	Relay output
		55	SSR drive output
		Lin	Linear DC voltage / current output
		dect	Transmitter power supply
Auxiliary Option A module type fitted	OPnR	nonE	No option fitted
		-485	RS485 communications
		dic	Digita Input for remote reset
Firmware type	Flu	Value displayed is firmware type number	
Firmware issue	155	Value displayed is firmware issue number	
Product Revision Level	PrL	Value displayed is Product Revision level	
Date of manufacture	d0¢7	Manufacturing date code (mmyy)	
Serial number 1	5 l	First four digits of serial number	
Serial number 2	5 nc	Middle four digits of serial number	
Serial number 3	5 n 3		

Parameter	$\begin{array}{\|l\|l\|} \hline \text { Upper } \\ \text { Display } \end{array}$	Lower	De
Instrument parameters are in default conditions	Coto	ConF	Configuration \& Setup required. This screen is seen at first turn on, or if hardware configuration has been changed. Press enter the Configuration Mode, next press Δ or ∇ to enter the unlock code number, then press \bigcirc to proceed
Input Over Range	[HHJ	Normal	Process variable input $>5 \%$ over-range
Input Under	[LL]	Norma	Process variable input $>5 \%$ under-ran
Range			
	OPEn	ormal	nocess varaber inpu sensor or wiring
Option 1 Error		$0 P_{n} 1$	Option 1 module fauth
Option 2 Error		OPne	Option 2 module fault
Option 3 Error	Err	QPn3	Option 3 module fauth
Option A Error		OPnA	Option A module fauth
Option B Error		OPnb	Option B not used on Limit Controllers this error is shown if any module is fitted

7. OPERATOR MODE
This mode is entered at power on, or accessed from Select mode (see section 2)
Note: All Configuration mode and Setup mode parameters must be set as Note: All Configuration mode and Setup mode parameters must be set as
require beotore statring norman operations.
Press p to scroll through the parameters.

$\begin{array}{\|l\|l\|} \hline \text { Upper } \\ \text { Display } \end{array}$	Lower Display	Display Strategy and When Visible	Description
PV Value	Limit SP Value	$\begin{aligned} & \text { disp EnRb } \\ & \text { (initial screen) } \end{aligned}$	PV and Limit Setpoint values $\begin{array}{r}\text { Read only }\end{array}$
$\begin{aligned} & \text { Limit SP } \\ & \text { Value } \end{aligned}$	(Blank)	$\begin{aligned} & \frac{15 P}{d, 5 P=d .5 R} \\ & \text { (initial screen) } \end{aligned}$	Limit Setpoint value Read only
High Limit Hold	H Hd	CtrL $=H^{\prime}$,	Highest PV value since this parameter was last reset To reset, press ∇ for 5 seconds display $=---$ when reset
Low Limit Hold	LoHd	$\underline{C t-L}=$ Lo	Lowest PV value since this To reset, press ∇ for 5 seconds, \square display $=$ 5 seconds
Exceed Time Value	t,	Always available Format mm.ss to o 9.59 then mmm.s. (10 sece increments) Shows $[H H]$ if ≥ 999.9	
Active Alarm Status	RLSt	When one or more alarms are active. ALM indicator will also flash	

Exceed Condition
An Exceed Condition is when the Process Variable exceeds the Limit Setpoin
(i.e. PV $>$ SP when set for high limit action, PV V SP for low limit action). The LED is on during this condition, and is extinguished once it has passed. Limit Output Function
Limit Output relay (s) de-energise whenever an Exceed condition occurs, causing
the process to shut down. The out The relay remains latched off even if the Exceed condition is no longer present. The relay remains latched off even if the Exceed condition is no longer present.
Only giving a reset instruction (after the exceed condition has passed) will re-
energise the relay. allowing the pocoess to continue. Th
 Limit Annunciator Outputs
An Annunciator output will activate when an Exceed condition occurs, and will
remain active unti a reset instruction is received, or the Exceed condition has
passed remain acitive untir a reset instruction is received, or the Exceed condition has
passed. Unlike the Limit Output, an Annunciator can be reset even it the Exceed
condition is present. When an Annunciato is is active the condition is present. When an An
Alarm Status screen is available.
Resetting Limit Outputs \& Annunciators
Ar esest instruction can be given by pressing the
fited key, via the Digital Input (if fitted) or via a Comms command if an RS485 Communications module is fitted.
Annunciators will deactivate. Limit Outputs will only re-energise if the Exceed Annunciators will dead
condition has passed

CAUTION: Ensure that the cause of the Exceed condition has been
rectified before resetting the Limit Output.

SERIAL COMMUNICATIONS
Refer to the full user guide (available from your supplier) for details.

9. SPECIFICATIONS

UNIVERSAL INPU

$\begin{array}{ll}\text { Thermocouple } & \begin{array}{l} \pm 0.1 \% \text { of full range, } \pm 1 \text { LSD } \pm 1^{\circ} \mathrm{C} \text { for Thermocouple CJC } \\ \text { Calibration: } \\ \text { BS4937, }\end{array} \\ \end{array}$
ST100 Calibration: $\pm 0.1 \%$ of full range, \pm LSD.
DC Calibration: BS 1904 \& DIN43760 ($\left.0.00385 / 5 / \Omega^{\circ} \mathrm{C}\right)$.
Sampling Rate: $\quad-\quad \pm$ per seond fange, ± 1 LSD
mpedance: $\quad>10 \mathrm{MQ}$ resistive, except DC $\mathrm{mA}(5 \Omega)$ and $\mathrm{V}(47 \mathrm{kO})$
$\begin{array}{ll}\text { Sensor Break } & \begin{array}{l}\text { Thermocouple, RTD, } 4 \text { to } 20 \mathrm{~mA} A \\ \text { onl } 2 \text { to } 10 \mathrm{~V} \text { and } 1 \text { to } \\ \text { only. Limit outputs }\end{array} \\ \text { Detection: }\end{array}$ only. Limit outputs turn off (goes into Exceed condition), hig
alarms activat for thermocouple/RTT $\begin{aligned} & \text { sensor break, low }\end{aligned}$ alarms activate for thermicouple/RTD sens
alarms activate for mAN $D C$ sensor break.
Isolated from all outputs (excent SSR driver.
Universal input must not be connected to operator accessible circuits if relay outputs are connected to a hararardouscessitage
soore. supplementary insulation or input grounding would
then be required.
DIGITAL INPUT
Volt-free(or TTL): Open(2 to 24 VDC$)=$ No Reset.
Isolation:

OUTPUTS
Contact Type \& Latching linit control relay. Single pole double throw (SPDT)

solation:
Alarm Relays
Singler or 3 position non-latching alarm relay.
Single pole double throw (SPDT); 2 A resistive at 120/240VAC
solation: \quad Basic, Isolation from universal input and SSP
Drive Capability: SSR drive voltage $>10 \mathrm{~V}$ into $500 \Omega \mathrm{~min}$
solation: Not isolated from universal input or other SSR driver outputs.
Triac
Operating Voltage: 20 to $280 \mathrm{~V} \mathrm{~ms}(47$ to 63 Hz$)$.
Current Rating: $\quad \begin{aligned} & 0.01 \text { to } 1 \mathrm{~A} \text { (full cycle } m \text { ms on-state @ } 25^{\circ} \mathrm{C} \text {); } \\ & \text { derates }\end{aligned}$
Isolation: Reinforced safety isolation from inputs and other outputs.
Resolution: $\quad 8$ bits in 250 mS (10 bits in 1 s typical, >10 bits in >1 s typical
Isolation:
ransmitter PSU
20 to 28 V DC (24 V nominal) into 910Ω minimum resistance

serial communication

Physical: RS485, at $1200,2400,4800,9600$ or 19200 bps.
solation: Reinforced safety isolation from all inputs and ould
OPERATING CONDITIONS (FOR INDOOR USE)
Ambient
Temperatur
$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (Operating), $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (Storage)
Relative Humidity: 20% to 95% non-condensing.
Supply Voltage and
Power:
(for mains powered versions), or
(to
(to
20 to $48 \mathrm{VAC} 50 / 60 \mathrm{~Hz} 7.5 \mathrm{VA}$ or 22 to 65 VDC 5 W
(for low voltage versions).
Standards:
CE, UL, ULC \& FM 3545, 1998
EM: \quad Complies with EN61326 (Susceptibility \& Emissions)
$\begin{array}{ll}\text { Safety } \\ \text { Considerations: } & \begin{array}{l}\text { Complies with EN61010-1 \& UL3121. } \\ \text { Pollution Degree 2, Installation Category }\end{array}\end{array}$
Front Panel Sealing: To IP66 (IP20 behind the panel).
Front Bezel Size: $\quad 1 / 16 \mathrm{Din}=48 \times 48 \mathrm{~mm}, 1 / 8 \mathrm{Din}=96 \times 48 \mathrm{~mm}$

Weight: $\quad \begin{aligned} & 1 / 216 \mathrm{D}^{2}=110 \mathrm{~m} \\ & 0.2 \mathrm{~kg} \text { maximu }\end{aligned}$

